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A formalism is proposed for simulation of NOESY, ROESY, effective field at a well-defined angle from the longitudinal
and, more specifically, off-resonance ROESY nuclear magnetic axis during the cross-relaxation mixing time. This angle can
resonance spectra. The off-resonance ROESY experiment has sev- be manipulated by changing the magnitude and the fre-
eral advantages compared to standard NOESY and ROESY exper-

quency of the applied RF field. The experiment can be con-iments. A simplified formalism which allows rapid computer simu-
sidered a combination of the NOESY and ROESY experi-lation of the development of magnetization, including relaxation,
ments because the observed auto- and cross-relaxation ratesin the presence of an RF field is of general use, in particular in
are linear combinations of longitudinal and transverse relax-the implementation and interpretation of off-resonance ROESY

experiments. The relevant matrix equations can be derived either ation rates (7, 8) . The off-resonance ROESY experiment
from the classical Bloch and Solomon equations or from the quan- provides the possibility of determining both longitudinal and
tum mechanical homogeneous master equation in the basis of the transverse cross-relaxation rates with high accuracy. Thus it
Cartesian product operators. Examples of simulated spectra and will, in principle, provide increased precision in distances
behavior of magnetization during pulse sequences are shown. In

used in structure determinations as well as information onaddition, we present the full quantum mechanical theory for a
dynamics (9) . It has previously been shown for NOESYtwo-spin system derived from the homogeneous master equation.
data that a complete analysis of experimental data using theThe proposed formalism, here applied to off-resonance ROESY,

has many potential applications, e.g., in the development and anal- Solomon equations (10) will increase the precision of the
ysis of ROESY and TOCSY mixing sequences, selective pulses, measured distances compared to the common isolated spin
and decoupling in which the complete spin dynamics, including pair approximation (11, 12) . Here, we present a similar pro-
relaxation, is taken into account. q 1997 Academic Press cedure useful for the analysis of off-resonance ROESY spec-

tra and experiments. Simplified algorithms for the descrip-
tion of the off-resonance ROESY experiments have been

INTRODUCTION proposed earlier (13) . However, this new approach is, in
our opinion, more direct and can produce both spectra and

Distances between protons in biological molecules are time-dependent magnetization trajectories. A second poten-
usually measured based on cross-relaxation in the laboratory tial use of the novel formalism is in the simulation of large
(NOESY) or rotating (ROESY) reference frames. Problems spin systems during selective pulses without neglecting re-
associated with NOESY (1, 2) include spin diffusion in mac- laxation.
romolecules (3) and the absence of longitudinal cross-relax- In addition, we present the corresponding form of the full
ation for molecules with an intermediate correlation time theory for a scalar-coupled two-spin system derived using
(É1/v0) . The ROESY (4, 5) experiment is less sensitive the homogeneous master equation in the basis of the
to these effects but a quantitative interpretation might be Cartesian product operators. The complete theory should be
prohibited by potential homonuclear Hartmann–Hahn trans- useful for the development and analysis of different types of
fer of magnetization (5, 6) . The transfer of magnetization mixing sequences used in, for example, ROESY and TOCSY
by Hartmann–Hahn matching can, on the other hand, be spectroscopy, when both relaxation and homonuclear Hart-
avoided in off-resonance ROESY (7, 8) experiments. In off- mann–Hahn effects need to be considered.
resonance ROESY the nuclear spins are aligned along an

THEORY

The system of equations we propose to use for the simula-1 To whom correspondence should be addressed. Fax: 46-8-608-92-90.
E-mail: peter@csb.ki.se. tion of NOESY, ROESY, and off-resonance ROESY spectra
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20 ALLARD, HELGSTRAND, AND HÄRD

Classical Mechanicscan be thought of either as an extension of the Solomon
equations (10) using the Bloch equations (14) in the frame We first describe a simple derivation based on classical
rotating with the frequency of the RF field, or as a special mechanics. The Bloch equations in the rotating frame can
case of the quantum mechanical homogeneous master equa- be written as (19)
tion (15–18) in the basis of Cartesian product operators
(15, 16) . dMx( t)

dt
Å 0Mx( t)l 0 My( t)V / Mz( t)vyIn our derivations below, we first use arguments based

on classical mechanics to set up a matrix representation of
the evolution of magnetization in a dipole–dipole-coupled dMy( t)

dt
Å Mx( t)V 0 My( t)l 0 Mz( t)vx

(but not scalar-coupled) two-spin system. We then go on
to verify this representation by deriving the corresponding dMz( t)

dt
Å 0Mx( t)vy / My( t)vx 0 (Mz( t) 0 M0)rmatrix using quantum mechanics. The result is a matrix

representation of the spin dynamics occurring in a scalar-
coupled and dipole–dipole-coupled two-spin system in the [1]
presence of an external RF field, i.e., a description of the

withcomplete theory for such a system. From our quantum
mechanical treatment we identify the result arrived at using

vx Å 0gB r
1cos(f)classical mechanics, if we remove the effect of scalar cou-

pling. vy Å 0gB r
1sin(f)

The only approximation made in the quantum mechani-
V Å v0 0 vRF , [2]cal derivation is that we assume that vetc ! 1, where ve

is the angular nuclear spin precession rate about the effec-
where V is the chemical shift offset frequency in rad s01

tive field and tc is the correlation time of the dipole–
and v0 is the Larmor frequency; B r

1 , vRF , and f are thedipole interactions. With this approximation the relaxation
strength, frequency, and phase of the applied RF field, re-behavior is the same as in the absence of the RF field, but
spectively; g is the magnetogyric ratio; vx and vy are thein a frame tilted relative to the static magnetic field (7, 19 ) .
magnetic field components along the x and y axes in radIn the final step of the quantum mechanical derivation we
s01 , respectively; l is the relaxation rate of transverse mag-

also set the scalar coupling constant to zero; i.e., we ignore
netization; r is the relaxation rate of longitudinal magnetiza-

scalar couplings. This means that Hartmann–Hahn magne- tion; and M0 is the equilibrium magnetization. In matrix form
tization transfer is not taken into account. This is not neces- this equation is
sarily a serious limitation because it can be avoided to a
large extent in off-resonance ROESY by limiting the angle
of the effective field. The treatment is in other aspects d

dtFMx

My

Mz

GÅ0F l V 0vy

0V l vx

vy 0vx r
GFMx

My

Mz

G/F 0
0

M0r
G .general and does for instance take the relaxation of like and

unlike spins properly into account (10, 20 ) . The matrix
representation of spin systems where scalar coupling is

[3]neglected can easily be extended to three or more spins.
The application of this formalism in the simulation of

The matrix can be extended to include several spins. If weNOESY, ROESY, and off-resonance ROESY spectra is
add one spin and label the spins I and S , and at the samestraightforward and is the major result that we want to
time add one additional row and column, the result iscommunicate here.

d

dt

E /2
Ix

Iy

Iz

Sx

Sy

Sz

Å 0

0 0 0 0 0 0 0
0 lI VI 0vy 0 0 0
0 0VI lI vx 0 0 0
0 vy 0vx rI 0 0 0
0 0 0 0 lS VS 0vy

0 0 0 0 0VS lS vx

0 0 0 0 vy 0vx rS

E /2
Ix

Iy

Iz

Sx

Sy

Sz

/

0
0
0

MI0rI

0
0

MS0rS

. [4]
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21NOESY, ROESY, AND OFF-RESONANCE ROESY SIMULATIONS

Matrix elements s and m corresponding to longitudinal and d

dt
s Å 0i[H , s] 0 GOO (s 0 s0) [8]transverse cross-relaxation, respectively, can be included in

analogy with the Solomon equations (4, 7, 10) . The E in
the magnetization vector stands for unity. The vector of

orsteady-state magnetization can be included in the first col-
umn in order to convert the inhomogeneous differential
equation into a homogeneous differential equation (15, 16) . d

dt
s Å 0( iHOO / GOO )s / GOO s0 [9]

We obtain

d

dt

E /2
Ix

Iy

Iz

Sx

Sy

Sz

Å 0

0 0 0 0 0 0 0
0 lI VI 0vy m 0 0
0 0VI lI vx 0 m 0

02UI vy 0vx rI 0 0 s
0 m 0 0 lS VS 0vy

0 0 m 0 0VS lS vx

02Us 0 0 s vy 0vx rS

E /2
Ix

Iy

Iz

Sx

Sy

Sz

[5]

with with

UI Å rIMI0 / sMS0 HOO s Å [H , s] . [10]

US Å sMI0 / rSMS0 . [6]

The master equation, Eq. [8 ] , consists of two terms. The
first term contains the spin Hamiltonian H , and it includesThe factor 2 that is multiplied with U in the first column is
all ‘‘coherent’’ influences on the ensemble of spins. Thedue to the multiplication with E /2 when forming the constant
second term accounts for the relaxation of the densityterm in the differential equation. The matrix thus formed is
operator to equilibrium (s0 ) during and after a perturba-our final result and it can easily be extended to large spin

systems since the size of the matrix increases linearly with tion. It contains the relaxation superoperator GOO , which
usually is calculated according to Redfield theorythe number of spins and is equal to (3N / 1) 1 (3N / 1)

for N spins. The correction factor for equilibrium magnetiza- (20, 22 ) .
We start with the coherent part of the master equationtion is then

and consider a scalar-coupled two-spin system, in which
both spins have spin quantum numbers of 1

2. First, we need
UI Å ∑

XxI

(rIXMI0 / sIXMX0) [7] a basis in Hilbert space for our calculations. The angular
momentum operators for a single spin 1

2 in the basis of Éa…

and Éb… , the Pauli spin matrices, are (19)
for each longitudinal Iz magnetization, where the sum is
taken over all dipole–dipole-coupled spins.

1
2

E Å 1
2 F1 0

0 1G , Ix Å
1
2 F0 1

1 0G ,
Quantum Mechanics

In order to more formally derive the set of equations
to be used in this paper we need to calculate the homoge- Iy Å

1
2 F0 0i

i 0 G , Iz Å
1
2 F1 0

0 01G . [11]
neous form of the quantum mechanical master equation
( 17 ) in the basis of Cartesian product operators (15, 16 ) .
The common inhomogeneous form of the quantum me- The matrix forms of the 16 Cartesian product operators
chanical master equation (20, 21 ) , the Liouville–von (23 ) in the direct product basis are calculated from the
Neumann equation for the density operator s, can be four single-spin Pauli spin matrices for the two spins (21 )

according towritten as
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22 ALLARD, HELGSTRAND, AND HÄRD

B 2spin
rs Å 2rB 1spin

r # B 1spin
s [12]

Grs Å 15
R 2

\ 2 ∑
qÅ2

qÅ02

J[qv]

with
1 Tr{[Aq , B 2spin

r ] †
r[Aq , B 2spin

s ]} , [17]

B 1spin Å 1
2E , Ix , Iy , Iz . [13]

where † denotes the adjoint, with

The result is 16 square matrices with the dimension 4 1 4
for a spin system consisting of two coupled spins 1

2 (19) .
Aq Å ∑

mÅ1

mÅ01
F1 1 2

m q0m 0qGImSq0m [18]The time-independent rotating frame Hamiltonian for a cou-
pled homonuclear two-spin system in the frame rotating with
the frequency of the RF field can be written using these
matrices as R Å S m0

4pDS\ 2gIgS

r 3
IS

D [19]

H Å VI Iz / VSSz / pJ(2IxSx / 2IySy
and

/ 2IzSz) / vx(Ix / Sx) / vy(Iy / Sy) , [14]

where VI and VS are the chemical shift offset frequencies in I1 Å 2F01√
2

(Ix / iIy) #
1
2

EG [20]
rad s01 , J is the scalar coupling constant for the two spins
in Hz, and vx and vy are the magnetic field components

I0 Å 2FIz #
1
2

EG [21]along the x and y axes, respectively, in rad s01 .
In order to solve the Liouville–von Neumann equation

in the superspace (17 ) the spin Hamiltonian must be ex-
I01 Å 2F 1√

2
(Ix 0 iIy) #

1
2

EG [22]pressed in this space. This can be done by calculating the
commutator superoperator for the spin Hamiltonian ac-
cording to (21 )

S1 Å 2F1
2

E #
01√

2
(Sx / iSy)G [23]

HOO Å H # EH 0 E # HH , [15]
S0 Å 2F1

2
E # SzG [24]

where Ç denotes the transpose. The superoperator form of
S01 Å 2F1

2
E #

1√
2

(Sx 0 iSy)G [25]the spin Hamiltonian is a 16 1 16 matrix in the level-shift
basis of the form Éaa… »aaÉ, etc. The basis of this matrix
can be changed to the basis of Cartesian product operators

in which I and S are the spherical spin operators for thefor two spins 1
2 using (21)

two interacting spins in the product basis calculated ac-
cording to Eq. [12] using the Pauli spin matrices defined

Hrs Å »B 2spin
r ÉHOO ÉB 2spin

s … [16] in Eq. [11] , m0 is the permeability of vacuum, \ is Plank’s
constant divided by 2p, and rIS is the distance between
spins I and S . The angular Larmor frequencies of spins Iin which B 2spin have been transformed into 16-unit-long col-
and S are labeled vI and vS , respectively. It should beumn vectors from the 4 1 4 matrices by appending rows
noted that the relaxation matrix elements are calculatedone through four after each other (21) .
without the usual secular approximations that are madeThe relaxation term in the master equation is calculated
when unlike spins are assumed, i.e., that resonances dousing Redfield theory (20, 22 ) . The elements of the Red-
not overlap.field relaxation matrix for dipole–dipole relaxation in the

The explicit matrix representation of the inhomogeneousbasis of Cartesian product operators can most easily be
master equation in the basis of Cartesian product operatorscalculated using Wigner 3-J symbols ( 24, 25 ) according
is thusto
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23NOESY, ROESY, AND OFF-RESONANCE ROESY SIMULATIONS

d

dt

E /2
Ix

Iy

Iz

Sx

Sy

Sz

2IxSz

2IySz

2IzSx

2IzSy

2IxSx

2IxSy

2IySx

2IySy

2IzSz

Å 0

0 0 0 0
0 lI VI 0vy

0 0VI lI vx

0 vy 0vx rI

0 m 0 0
0 0 m 0
0 0 0 s
0 0 pJ 0
0 0pJ 0 0
0 0 0pJ 0
0 pJ 0 0
0 0 0 0
0 0 0 0pJ
0 0 0 pJ
0 0 0 0
0 0 0 0

0 0 0 0
m 0 0 0
0 m 0 0pJ
0 0 s 0
lS VS 0vy 0
0VS lS vx pJ
vy 0vx rS 0
0 0pJ 0 r a

I

pJ 0 0 0VI

0 pJ 0 ma

0pJ 0 0 0
0 0 0 0vy

0 0 pJ vx

0 0 0pJ 0
0 0 0 0
0 0 0 vy

l xy Å l yx Å 1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D

0 0 0 0
pJ 0 0pJ 0
0 pJ 0 0
0 0 0 0
0pJ 0 pJ 0

0 0pJ 0 0
0 0 0 0
VI ma 0 vy

r a
I 0 ma 0

0 r a
S VS vy

ma 0VS r a
S 0

0 0vy 0 l xx

0 0 0vy 0VS

0vy vx 0 0VI

vx 0 vx mxxyy

0vx vy 0vx mxxzz

0 0 0 0
0 0 0 0
0 0 0 0
pJ 0pJ 0 0
0 0 0 0
0 0 0 0
0pJ pJ 0 0
0vx 0 0 0vy

0 vy 0vx vx

0 0vx 0 0vy

vy 0 0vx vx

VS VI mxxyy mxxzz

l xy mxyyx VI 0
mxyyx l yx VS 0
0VI 0VS l yy myyzz

0 0 myyzz r 2sp
IS

E /2
Ix

Iy

Iz

Sx

Sy

Sz

2IxSz

2IySz

2IzSx

2IzSy

2IxSx

2IxSy

2IySx

2IySy

2IzSz

/

0
0
0
UI

0
0
US

0
0
0
0
0
0
0
0
0

[26]

with

UI Å rIMI0 / sMS0 1 [J(0) / 3J(v) / 3J(2v)] [33]
US Å sMI0 / rSMS0

l xx Å l yy Å 1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D
and

1 [3J(v) / 3J(2v)] [34]

lI Å lS Å
1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D
r 2sp

IS Å 1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[6J(v)] [35]

1 F5
2

J(0) / 9
2

J(v) / 3J(2v)G [27]
mxyyx Å 1

4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[0J(0) / 3J(2v)] [36]

rI Å rS Å
1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D
mxxyy Å 1

4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[03J(2v)] [37]

1 [J(0) / 3J(v) / 6J(2v)] [28]

mxxzz Å myyzz Å 1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[03J(v)] [38]
m Å 1

4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[2J(0) / 3J(2v)] [29]

J(v) Å 2
5

tc

(1 / v 2t 2
c )

, [39]
s Å 1

4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[0J(0) / 6J(2v)] [30]

where tc is the correlation time; l is the relaxation rate of
r a

I Å r a
S Å

1
4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D transverse in-phase magnetization; r is the relaxation rate of
longitudinal magnetization; m is the transverse cross-relaxation
rate; s is the longitudinal cross-relaxation rate; r a

I is the relax-1 F5
2

J(0) / 3
2

J(v) / 3J(2v)G [31]
ation rate of transverse I magnetization that is antiphase with
respect to S; ma is the cross-relaxation rate between antiphase
coherences; lxx , lxy , lyx , and lyy represent the relaxation ratesma Å 1

4 S m0

4pD
2S\ 2g 2

I g
2
S

r 6
IS

D[2J(0)] [32]
of the multiple-quantum coherences; r2sp

IS is the relaxation rate
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24 ALLARD, HELGSTRAND, AND HÄRD

of longitudinal two-spin order; mxyyx and mxxyy are cross-relax- These terms will keep the magnetization oscillating between
x and y magnetization and thus make the nonsecular cross-ation rates between multiple-quantum coherence components;

and finally, mxxzz and myyzz are cross-relaxation rates not ob- relaxation pathways ineffective unless the spins are either
spin-locked in the RF field or have the same chemical shiftserved between unlike spins. The (ad hoc) correction vector

for equilibrium magnetization with the elements UI and US is (10, 26) .
calculated by multiplying the relaxation matrix GOO with the

Off-Resonance ROESYequilibrium density operator vector s0 .
The inhomogeneous differential equation corresponding The coherent part of the matrix equation will keep the

magnetization in precession about an effective field withto the inhomogeneous quantum mechanical master equation
can be rewritten into a homogeneous differential equation an effective frequency at a specified angle from the z axis,

ui (19 ) . By introducing a rotating frame, tilted with thewith help of the previously unused first column (15, 16) :

d

dt

E /2
Ix

Iy

Iz

Sx

Sy

Sz

2IxSz

2IySz

2IzSx

2IzSy

2IxSx

2IxSy

2IySx

2IySy

2IzSz

Å0

0 0 0 0
0 lI VI 0vy

0 0VI lI vx

02UI vy 0vx rI

0 m 0 0
0 0 m 0

02US 0 0 s
0 0 pJ 0
0 0pJ 0 0
0 0 0pJ 0
0 pJ 0 0
0 0 0 0
0 0 0 0pJ
0 0 0 pJ
0 0 0 0
0 0 0 0

0 0 0 0
m 0 0 0
0 m 0 0pJ
0 0 s 0
lS VS 0vy 0
0VS lS vx pJ
vy 0vx rS 0
0 0pJ 0 r a

I

pJ 0 0 0VI

0 pJ 0 ma

0pJ 0 0 0
0 0 0 0vy

0 0 pJ vx

0 0 0pJ 0
0 0 0 0
0 0 0 vy

0 0 0 0
pJ 0 0pJ 0
0 pJ 0 0
0 0 0 0
0pJ 0 pJ 0

0 0pJ 0 0
0 0 0 0
VI ma 0 vy

r a
I 0 ma 0

0 r a
S VS vy

ma 0VS r a
S 0

0 0vy 0 l xx

0 0 0vy 0VS

0vy vx 0 0VI

vx 0 vx mxxyy

0vx vy 0vx mxxzz

0 0 0 0
0 0 0 0
0 0 0 0
pJ 0pJ 0 0
0 0 0 0
0 0 0 0
0pJ pJ 0 0
0vx 0 0 0vy

0 vy 0vx vx

0 0vx 0 0vy

vy 0 0vx vx

VS VI mxxyy mxxzz

l xy mxyyx VI 0
mxyyx l yx VS 0
0VI 0VS l yy myyzz

0 0 myyzz r 2sp
IS

E /2
Ix

Iy

Iz

Sx

Sy

Sz

2IxSz

2IySz

2IzSx

2IzSy

2IxSx

2IxSy

2IySx

2IySy

2IzSz

.

[40]

The extra elements in the first column will not affect the angle ui , it has previously been shown (7, 19 ) that the
effective cross- and auto-relaxation rates in the tilted rotat-eigenvalues, or rates, but only the eigenvectors, and thus the

position of the eventual equilibrium (15, 16) . ing frame are linear combinations of transverse and longi-
tudinal relaxation rates in the rotating frame as definedEquation [40] represents the complete theory for two

spins 1
2 in the presence of an RF field, if vetc ! 1 is by Solomon (10 ) . The effective relaxation rates in the

tilted frame are thusassumed as discussed earlier. It is possible to extend the
complete theory to involve three (or more) spins. Such a
derivation would follow the same general lines as used

s *IS Å cos(uI)cos(uS)sIS / sin(uI)sin(uS)mIShere for the two-spin system, i.e., deriving the appropriate
three-spin operator basis and inserting the operators to r *I Å cos2(uI)rI / sin2(uI)lI [41]
generate the matrix elements of a homogeneous differen-
tial equation (equivalent to Eq. [40] ) describing the evo-

withlution of the three-spin system.
In the absence of scalar coupling the upper left 7 1 7

part of the matrix in Eq. [40] is block diagonal with re-
tan(u) Å 0 gB1

V
Å v1

V
, [42]spect to the rest of the matrix and can therefore be treated

separately. We now have a matrix equation that is identical
to that arrived at using classical mechanics, Eq. [5 ] .

It should be noted that the chemical shifts and the scalar where V is the difference between the RF field frequency
and the resonance frequency of the spin under consideration.coupling which motivate the secular approximation when

calculating the relaxation matrix for unlike spins are included These are the equations usually used in the evaluation of
off-resonance ROESY experiments.in the coherent part of the homogeneous master equation.
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25NOESY, ROESY, AND OFF-RESONANCE ROESY SIMULATIONS

Simulating Spectra

The solution to the homogeneous master equation, which
is a homogeneous differential equation of the first order, is

s( t) Å exp[0POO t]rs( t Å 0), [43]

where exp[0POO t] is a superoperator relaxation propagator
(18) and P is the matrix either in Eq. [5] or in Eq. [40].
The expectation value of an arbitrary operator Obs, corre-
sponding to an observable, can be calculated according to

»Obs … Å »Obs†
És( t) … . [44]

The operators corresponding to observable x and y magneti- FIG. 1. The transfer of magnetization from spin 1 to spin 2 of a scalar-
zation are Ix / Sx and Iy / Sy , respectively. The detectable coupled two-spin system calculated using the simplified theory (dashed

line) and the complete theory (solid line) for all off-resonance anglesmagnetization can thus be calculated as
between ROESY (u1Å 907) and NOESY (u1Å 07) . The difference between
the simplified and the exact theory is illustrated with a dotted line. The

»Ix / Sx … Å »(Ix / Sx)†
És( t) … application of the simplified theory involves use of Eqs. [5] , [7] , [27] –

[30], [43], [46], and [47] and the complete theory of Eqs. [27] – [40],
»Iy / Sy … Å »(Iy / Sy)†

És( t) … . [45]
[43], [46], and [47] as described in the text. A unity-sized magnetization
vector was placed along the effective field for spin 1 and the buildup of

A complete FID can be calculated recursively with (18) the corresponding magnetization vector for spin 2 after a mixing time of
60 ms is shown. The chemical shifts were 0 and 0200 Hz for spin 1 and
2, respectively. The strength of the RF field was 5111 Hz. The distanceFIDx(k) Å »(Ix / Sx)†

Éexp[0POO tdwell ]Ésk01 …
between the spins and the correlation time was 2.5 Å and 2.5 ns, respec-
tively. The scalar coupling constant was 10 Hz and the spectrometer fre-FIDy(k) Å »(Iy / Sy)†

Éexp[0POO tdwell ]Ésk01 … , [46]
quency was 500 MHz.

where

No ROESY transfer of magnetization is observed in theÉsk … Å exp[0POO tdwell ]Ésk01 … . [47]
transverse plane if the two spins do not have the same chemi-
cal shift, unless both spins are spin-locked by the RF field.The computational method is the same whether or not the
If the spins are spin-locked using an on-resonance RF fieldhomogeneous master equation is solved with or without sca-
the observed transfer of magnetization corresponds to equa-lar couplings.
tions given by Bothner-By et al. (4) .

If two spins have the same chemical shift the observedRESULTS
transverse relaxation rate becomes the sum of the diagonal

The simulations described below were carried out assum- auto-relaxation rate l and the off-diagonal cross-relaxation
ing that the spins were not scalar-coupled using Eqs. [5] , rate m. This is the correct relaxation rate for like spins
[7] , [43], [46], and [47], except for one of the simulations (10, 20) . With different chemical shifts and without an RF
presented in Fig. 1, for which the complete theory, Eqs. field the two spins relax independently with their respective
[27] – [40], [43], [46], and [47], was applied. The simula- transverse relaxation rates for unlike spins, l.
tions were performed using Matlab software running on a

Effect of Homonuclear Hartmann–Hahn TransferSilicon Graphics Indy workstation with a 150-MHz MIPS
R5000 processor. In Fig. 1 we show the transfer of magnetization from

spin 1 to spin 2 calculated using both the complete and
Test of Formalism

the simplified theory for all off-resonance angles between
ROESY (u1 Å 907 ) and NOESY (u1 Å 07 ) . The full theoryA number of tests were performed in order to evaluate

and verify the simplified formalism. is described by a solid line, the simplified theory by a
dashed line, and the difference between the two cases byThe longitudinal part of Eq. [5] corresponds to the Solo-

mon equations and it behaves accordingly. Both selective a dotted line.
A unity-sized magnetization vector was placed along theand nonselective transient experiments as well as steady-

state NOE effects are correctly reproduced. effective field for spin 1 and the buildup of the corresponding
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magnetization vector for spin 2 after a constant mixing time V during the spin lock in the simulation. Dephasing of trans-
verse magnetization due to the pulsed field gradients waswas followed in Fig. 1 for different off-resonance angles.

The off-resonance angle is defined for spin 1. simulated by multiplication with a unity matrix in which the
diagonal elements corresponding to x and y magnetizationThe scalar coupling was 10 Hz and the chemical shifts of

spin 1 and 2 were 0 and 0200 Hz, respectively. The distance were set to zero.
The chemical shifts were 0 and 1000 Hz for spin 1 andbetween the two spins was 2.5 Å. A single correlation time

of 2.5 ns and a spectrometer frequency of 500 MHz were 2, respectively. The longitudinal auto-relaxation rates were
2 s01 and the transverse auto-relaxation rates were 7 s01 .assumed in order to calculate the relaxation rates. The

strength of the RF field was 5111 Hz and a mixing time of The longitudinal and transverse cross-relaxation rates were
01 and 4 s01 , respectively. A Gaussian 2707 pulse consisting60 ms was used.

The Hartmann–Hahn matching shows an oscillatory be- of 512 steps with a total length of 10 ms, a truncation level
of 1%, and a strength of 181 Hz was used as a selectivehavior as a function of the off-resonance angle as can be

observed in Fig. 1. Similar effects can also be simulated pulse. The mixing time was 100 ms including two adiabatic
rotations of 3 ms length and 1024 steps, respectively. Theusing the equations presented by Bax (27) . In this particular

case it can also be observed that the Hartmann–Hahn trans- adiabatic rotations work well if a sufficient number of steps
are used to construct the linear amplitude gradients. Thefer is much less effective than the ROESY transfer for off-

resonance angles less than 607. The relative contribution due amount of magnetization that becomes aligned along the
effective field at an angle u after an adiabatic rotation con-to Hartmann–Hahn transfer is, of course, dependent on the

exact input parameters, such as coupling constant, distance, sisting of n steps is cos(u /n) n ; thus 64 steps are enough for
transfer of 98% of the magnetization from the z axis to theand correlation time.

Simulation of an Off-Resonance ROESY Pulse Sequence

In Fig. 2 we show the off-resonance ROESY pulse se-
quence (A) by Berthault et al. (9) and the x , y , and z
magnetization of spin 1 (B) and 2 (C) of a two-spin system
during the pulse sequence. A single transient with all pulse
and receiver phases set to X was used in the simulation and
the idealized effect of pulsed field gradients was added to
the original pulse sequence before and after the spin lock in
order to purge transverse magnetization (not shown). The
simulated x , y , and z magnetizations are presented as dotted,
dashed, and solid lines, respectively.

The pulse sequence consists of a selective 2707 Gaussian
pulse directly followed by a hard 907 pulse. Only spin 1 is
effectively excited by the Gaussian pulse. The magnetiza-
tions of spins 1 and 2 are now aligned along the z axis and
the 0y axis, respectively. The mixing time starts with a
pulsed field gradient which purges the magnetization of spin
2. The carrier frequency is then changed to a suitable offset
and an adiabatic rotation to the effective field is performed
using a slow buildup of the RF field (20) . Only spin 1 has
large magnetization components aligned along the effective

FIG. 2. The off-resonance ROESY pulse sequence (A) by Berthault etfield after the adiabatic rotation since the magnetization of
al. (9) and the x , y , and z magnetization of spins 1 (B) and 2 (C) duringspin 2 was purged. A continuous wave off-resonance RF
the pulse sequence. The x , y , and z magnetizations are presented as dotted,

field is now turned on during the mixing time, followed by dashed, and solid lines, respectively. Transient magnetization vectors were
an adiabatic rotation of the magnetization of both spins back calculated using Eqs. [5] , [7] , [43], [46], and [47]. The input data used

in the simulation are described in the text. A single transient with all phasesto the z axis. A second pulsed field gradient is used in order
set to X was used in the simulation and the effect of pulsed field gradientsto purge residual transverse magnetization and the frequency
was added to the original pulse sequence before and after the spin lock inis changed back to the original value. The pulse sequence
order to purge transverse magnetization (not shown). A Gaussian 2707

ends with a hard 907 read pulse before acquiring data. pulse was used as a selective pulse. Only spin 1 was effectively excited by
The shift of carrier frequency was accomplished by simply the Gaussian pulse. The mixing time was 100 ms including two adiabatic

rotations.adding an offset frequency to the offset chemical shift terms
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00.4, 00.5, and 00.3 s01 , respectively. The mixing time
including adiabatic rotations was 100 ms. The length of the
adiabatic rotations was 3 ms with 1024-step linear amplitude
ramps. The spin-lock power was 10 kHz and the offset fre-
quency was 50 kHz. The 907 pulse length was 10 ms, corre-
sponding to a transmitter power of 25 kHz. The number of
complex points calculated in both dimensions was 64, using
the method of States et al. (29) to obtain absorption mode
in the indirectly detected dimension. The acquisition time
was 0.02 s in both dimensions. Pulsed field gradients and the
shift of frequency were simulated as described previously.

The total time required for the simulation was about 25
s. Several matrices corresponding to superoperator propa-
gators could be multiplied together in advance of the mainFIG. 3. The simulated off-resonance ROESY 2D spectrum of a three-
program loop in order to minimize the time required forspin system calculated using Eqs. [5] , [7] , [43], [46], and [47] presented

in the text. The pulse sequence used is the 2D analogue of the pulse sequence the simulation.
presented in Fig. 2, but in which the shaped pulse has been replaced by a The result is an ordinary 2D spectrum with three diagonal
hard 907 pulse directly followed by a t1 period (28) . A two-step phase peaks and three cross peaks, presented as a stack plot (Fig.
cycle of X , 0X was applied on the first pulse and the receiver. The input

3) . The different cross-relaxation rates can be observed asdata used in the simulation are given in the text. The mixing time was 100
different intensities of the cross peaks. All cross peaks arems. The number of complex points calculated in both dimensions was 64,

using the method of States et al. (29) to obtain absorption mode in the positive since the longitudinal cross-relaxation dominates
indirect dimension. The acquisition time was 0.02 s in both dimensions. over the transverse cross-relaxation at this particular off-

resonance angle. The sharp shapes of the peaks are due to
the limited digital resolution. No window functions were
used during the processing of the theoretical free inductionxy plane. The strength of the spin-lock field applied during
decays.the mixing time was 20 kHz and it was applied with an

offset of 10 kHz. The hard pulses were applied with a field
DISCUSSIONstrength of 25 kHz, corresponding to a 907 pulse length of

10 ms.
It is of course possible to simulate off-resonance ROESYThe off-resonance angle u for spin 1 was 63.47 during the

spectra using the complete quantum mechanical theorymixing time and the x and z components of the magnetization
(20, 21, 30) as described in homogeneous form by Eq. [40].correspond to this angle; see Fig. 2B. The net magnetization
The problem is that the size of the matrix to be diagonalizedof spin 1 decays as a result of relaxation and magnetization
increases rapidly with the number of spins involved. For Nis appearing on spin 2 due to cross-relaxation. The simulation
spins 1

2 the matrix is 4N 1 4N , and this size prohibits simula-shows that the transverse cross-relaxation dominates over
tions of large spin systems. With the simplified matrix repre-the longitudinal cross-relaxation since the magnetization of
sentation presented here, the size of the matrix to be diago-spin 2 is appearing along the negative x and z axes during
nalized is only (3N / 1) 1 (3N / 1), and it increasesthe mixing time (Fig. 2C).
linearly with the number of spins involved. Simulations of
large spin systems are therefore feasible.Simulation of a 2D Off-Resonance ROESY Spectrum

For simulations of NOESY experiments, the matrix equa-
tion to be solved is approximately three times larger forIn Fig. 3 we show the simulated off-resonance ROESY

2D spectrum of a three-spin system. The pulse sequence the new method compared to the common relaxation matrix
approach, used in the determination of distances without theused is the 2D analogue of the pulse sequence used in Fig.

2, but in which the shaped pulse has been replaced by a hard isolated spin pair approximation (11, 12) . The time required
for solving the eigensystem for a matrix is proportional to907 pulse directly followed by a t1 period (28) . A two-step

phase cycle of X , 0X was applied on the first pulse and the N 3 . The method presented in this paper is therefore 27 times
more computer intensive. The present simulation methodreceiver.

The chemical shifts for spins 1, 2, and 3 were 1000, 0, also needs the chemical shifts for all dipole–dipole-coupled
spins as input. This is not needed when using the longitudinaland 0500 Hz, respectively. All longitudinal and transverse

auto-relaxation rates were 3 and 20 s01 , respectively. The Solomon equations (10) .
Since the solution to the equation system is in the formtransverse cross-relaxation rates were 3 s01 . The longitudinal

cross-relaxation rates between spin 1–2, 1–3, and 2–3 were of a superoperator propagator (18) , several parts of a pulse
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sequence, i.e., pulses and delays, with their respective super- general with the exception that strong scalar coupling effects
and therefore homonuclear Hartmann–Hahn effects are ne-operator propagators, can be combined into a single superop-

erator propagator. Multidimensional spectra with many glected.
In addition, we have presented the complete quantum me-pulses can therefore be efficiently calculated. A spin lock

using a DANTE (31) sequence should not require much chanical theory for a two-spin system using the homoge-
neous master equation in the basis of Cartesian product oper-more computational time than a spin lock using a continuous

wave RF field (18) . It should be noted that this is true both ators. This theory will accurately include homonuclear Hart-
mann–Hahn effects as well as relaxation which should befor the complete theory, Eq. [40], and for the simplified

theory, Eq. [5] . useful for the analysis and optimization of mixing sequences
as well as shaped pulses. Research in this direction is cur-We find the matrix representation of the complete homo-

geneous master equation, Eq. [40], interesting in itself. For rently in progress in our laboratory.
instance, all transformation rules for Cartesian product oper-
ators (23) can easily be extracted by inspection of anti- ACKNOWLEDGMENTS
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